

International Journal of Computer & Information Technologies (IJOCIT)
www.ijocit.ir & www.ijocit.org

ISSN = 2345-3877

OMADM: Online Multi-step Attack Detection Method

Ali Amiri1, Alireza Nowroozi2

Security Evaluation Lab for ICT Appliances, IT Security Institute, ICT Department,

Malekashtar University of Technology, Tehran, Iran1,2

Email: ali.amiri@chmail.ir

Security Evaluation Lab for ICT Appliances, IT Security Institute, ICT Department,

Malekashtar University of Technology, Tehran, Iran

Email: nowroozi@mut.ac.ir)
ali.amiri@chmail.ir1, nowroozi@mut.ac.ir2

Keywords: Network Intrusion detection system, multi-step attacks, attack scenarios, alert correlation

Abstract: - Network Intrusion detection systems (NIDS) have become an important and essential

part of computer networks, and increase the security of them. Traditional NIDS, despite their

advantages, have some disadvantages such as: producing high amounts of alerts that are low-level,

mixing true alerts with false alerts, inability to find a logical connection between alerts for detecting

novel and multi-step attacks, and Managing and detecting alerts in an offline mode. As a result, it is

difficult for human users and intrusion response systems to understand the alerts and takes proper

actions on time. A new kind of attacks that NIDS has some weaknesses for detecting them, are multi-

step attacks. In this kind of attacks, the attacker runs the attack based on a pre-designed scenario and in

separate steps; each of these steps has a logical connection with other steps. In this paper, we propose

an online multi-step attack detection method (OMADM) based on prerequisites and consequences of

the attacks. In OMADM method, the alerts are processed in an online mode, and the attack scenarios

will be generated in an online mode. To evaluate and make sure the accuracy for this method and

validating OMADM, we implement an online multi-step attack detection tool (OMADT), a prototype

of OMADM, and evaluate OMADM with DARPA 2000 and a collected dataset that includes some

attack scenarios. Each attack scenario in our dataset has different models. Our experiment

demonstrates the accuracy, speed, and the high ability of this method in alert correlation and detecting

online multi-step attacks and generating online attack scenarios.

http://www.ijocit.ir/
http://www.ijocit.org/
mailto:nowroozi@mut.ac.ir
mailto:nowroozi@mut.ac.ir

© 2015, IJOCIT All Rights Reserved Page 673

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Ali Amiri

April, 2015

1. Introduction
In order to detect an intruder who is trying to

penetrate into our network, we use NIDS. NIDS

receives security alerts and analysis this alerts

automatically. The result from this analysis help

us detect and prevent the same attack in the

future. Intrusion detection techniques can be

categorized as anomaly detection and misuse

detection. Anomaly detection is based on the

normal behavior of a subject (e.g., a user or a

system). We detect a normal behavior of a

subject and model it. With this assumption that

any action that significantly deviates from the

normal behavior is considered intrusive, we

detect the attack.

Misuse detection detects attacks based on the

characteristics of known attacks or system

vulnerabilities; any action that conforms to the

pattern of a known attack or vulnerability is

considered intrusive. The Traditional intrusion

detection systems use this method for detecting

intrusive activity. Traditional IDSs fail to detect

new attacks because of complexity and

sophistication of these attacks. This IDSs also

generate a large amount of alerts that are mixed

with false alerts. This situation makes it difficult

for the network managers to have a clear view of

the security status within the network and do

some effective measures in time. Alert

correlation can solve these problems. Alert

correlation reduces the large amount of alerts and

reduces false alerts. One of the alert correlation

methods is alert correlation based on

prerequisites and consequences of attacks. In this

method, process of correlation tries to find the

Causal relationship between alerts based on their

prerequisites and consequences. The prerequisite

of an attack is the necessary conditions for the

attack to be successful, while the consequence of

an attack is the possible outcome of the attack.

The main idea for this method is: correlate alerts

if the prerequisites of some later alerts are

satisfied with the consequences of some earlier

alerts. One problem that is not completely solved

with alert correlation methods is multi-step

attacks. In a multi-step attack, the intruder breaks

the attack into many steps that each step is done

separately and there is a logical connection

between these steps.

In this article, we propose a method for solving

the mentioned problems. We called our method

“Online Multi-step Attack Detection Method” or

OMADM. In OMADM, alerts are correlated

based on their prerequisites and consequences of

attacks.

The rest of this paper is organized as follows:

section 2 discusses related work. Section 3

presents our method, OMADM. Section 4

presents our tool, OMADT and reports our

experiment. Section 5 presents a comparison

between OMADT with a tool called TIAA.

2. Related work

Intrusion detection has been studied for more

than 34 years since Anderson’s report. A survey

of the early work on intrusion detection is given

in [1] by Stefan et al. and [2] by Peyman Kabiri

et al. All these IDSs are aimed at detecting low-

level attacks or anomalies, and none can capture

the logical steps or attack strategies behind these

attacks. It is usually up to human users to

discover the connections between alerts.

However, in the large-scale network situations,

IDSs may generate large numbers of alerts, and it

seems impossible to correlate alerts by hands. A

lot of methods have been proposed for alert

correlation and for solving the mention problems

that you can see a comprehensive survey on

them in [3] by Saeed Salah et al. One of this

© 2015, IJOCIT All Rights Reserved Page 674

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Ali Amiri

April, 2015

method is alert correlation based on prerequisites

and consequences. A lot of work has been done

with this method of correlation, but we will

introduce some of them that are more important.

Zhaowen et al. [4] proposed RIAC, a real time

alert correlation model to analyze and discover

attack scenarios behind alerts. The assumption

here states that the component attacks are usually

not isolated, but related to different stages of the

attacks, with the early ones preparing for the

later ones. They introduce the notion of hyper-

alerts to represent the prerequisite and the

consequence of each type of alert by using

logical predicates. Each hyper-alert is a tuple

(fact, prerequisite, consequence), where fact is

the set of alerts attribute’s names, and

prerequisite and consequence are two different

sets, each one consisting of a logical

combination of predicates expressed as

mathematical conditions on the variables

contained in the set fact.

Ning et al. [5] also published a similar work.

They presented TIAA, a toolkit for constructing

attack scenarios by using predicates as the basic

constructs to represent the prerequisites and

(possible) consequences of attacks. Based on the

prerequisites and consequences of different types

of attacks, the proposed method correlates alert

by partially matching the consequences of some

prior alerts with the prerequisites of some later

ones.

Whereas TIAA allows partial satisfaction of

prerequisites, JIGSAW [6] requires that all

capabilities be satisfied. JIGSAW is a multistage

correlation system. It uses capabilities and

concepts to formulate the attack conditions.

Capabilities are used to describe the information

that the attacker must know to perform a certain

attack, while concepts are used to model

fragments of complex attacks.

MIRADOR was developed independently and in

parallel to TIAA. MIRADOR correlation method

proposed by Cuppens and Miege in [7]. The

MIRADOR approach also correlates alerts using

partial match of prerequisites (preconditions) and

consequences (post conditions) of attacks.

However, the MIRADOR approach uses a

different formalism than TIAA. In particular, the

MIRADOR approach treats alert aggregation as

an individual stage before alert correlation, while

TIAA allows alert aggregation during and after

correlation.

Xiao et al. [8] proposed an alert correlation

approach for alert fusion. It has two phases.

First, using a fuzzy clustering algorithm, some

alert subsets are created. Second, the method of

correlating alerts based on prerequisites and

consequences of attacks is adapted to be applied

to these subsets.

Finally, Alserhani et al. [9] developed a rule

based correlation language MARS, a Multi-stage

Attack Recognition System. Unlike others, they

add another two parameters for modeling attack

consequences, i.e., vulnerability and extensional

consequences. MARS is mainly based on the

phenomena of ‘‘cause and effect’’. It has two

main components: online and offline. The main

purpose of the online component is to receive

raw alerts and generates hyper-alerts. Then,

multi-stage attack recognition is applied to

correlate hyper-alerts based on rules provided by

the offline component.

The method that we use in this article is close to

the methods that have been used in TIAA,

JIGSAW, and MIRADOR. A problem of these

methods [10-12] is that they are offline. In

addition, the solutions such as [13–15] that do

operate in online mode have problems in

performance and are only able to operate in real-

time on datasets with a low alert-rate.

© 2015, IJOCIT All Rights Reserved Page 675

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Ali Amiri

April, 2015

3. OMADM, correlation and multi-

step attack detection system

For solving problems that we mention in the

previous section, we propose an online multi-

step attack detection method (OMADM) for

detecting the logical connection between alerts

and extracting attack scenario. For detecting the

connection between alerts and extracting attack

scenario OMADM uses alert correlation method

based on the prerequisite and consequence. The

first comprehensive architecture is presented in

[16]. Fig.1 show the architecture of OMADM.

For correlation between alerts we need a

knowledge base that stores the hyper-alerts that

each of these hyper-alerts is equivalent to an

intrusion detection system alert or an attack. A

hyper-alert type T is a triple (fact, prerequisite,

and consequence), where (1) fact is a set of

attribute names, each with an associated domain

of values such as source and destination IP

addresses, (2) prerequisite is a logical

combination of predicates whose free variables

are all in fact, and (3) consequence is a set of

predicates such that all the free variables in

consequence are in fact. The knowledge base

consists of three sections:

 Predicates: which specify the

prerequisites, and the consequences of a

given alert.

 Hyper-alert types: which specify the

related predicates of a given alert such as

fact, prerequisite that are needed to this

hyper alert and consequence that happen

in the Occurrence of this hyper-alert.

 Implications: which specify the relations

between different predicates.

In addition to the knowledge base for alert

correlation, we need a database. Fig.2 show the

database of OMADM.

The main idea of OMADM is: each attack in

addition to its own consequences may be, in

consequence, of earlier attacks. It means that

some attack happened before and now there is a

new attack. This attack has some consequences,

but this attack may be, in consequences of the

earlier attack. The main idea of most of the alert

correlation methods that are using pre/post

condition is: correlate alerts if the prerequisites

of some later alerts are satisfied with the

consequences of some earlier alerts. The

difference between our idea and this idea is:

When an attack occurs, we create a list of all the

attacks that can occur as a result of the attack

base on this attack and our knowledge base.

When a new attack occurs, we match the attack

with the previous list of attacks. If some

important variable matches, these attacks are

correlated with each other. But in other methods

when a new attack happens, its prerequisites are

checked with the consequences of previous

attacks. Our matching is based on attack not

based on prerequisites and consequences of

attacks. This is why our method is online. With

regard to this idea, we explain other parts of

OMADM architecture.

Alert receiver gets the different alert from

different IDSs that are distributed over the

network. In fact, all the generated alert in the

network will lead to the alert receiver. Each of

these alerts has a standard structure like IDMEF

format and other vendor specific formats. Alert

receiver gives this row alert to the OMADM

database and alert normalization section.

International Journal of Computer & Information Technologies (IJOCIT)
www.ijocit.ir & www.ijocit.org

ISSN = 2345-3877

In the alert normalization and preprocessor, the

alerts that are received from alert receivers, first

go in a new and necessary template that is

needed for OMADM and then they are delivered

to preprocessor. OMADM needs only some

parameters of received alerts that are from

different sensors with different templates.

The preprocessor, generate the hyper-alert

equivalent to each alert and give this hyper-alert

to the next section, consequence finder. You can

Fig1: OMADM Architecture

Fig2: OMADM Database

http://www.ijocit.ir/
http://www.ijocit.org/

© 2015, IJOCIT All Rights Reserved Page 677

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Ali Amiri

April, 2015

see some hyper-alert in Fig.2 in KB-HyperAlert

table.

With regard to the hyper-alert that is received

from the previous section, consequence finder by

using the knowledge base will find all the

consequences that are resulting from this hyper-

alert. It means that we find all the attacks that

may happen because of this attack. Then,

because may exist an implicit consequence for

some hyper-alert, the result finder, by using the

implication table, for each funded hyper-alert

finds the implicit consequences. The result field

in the BaseInfo table shows all the hyper-alerts

that the consequence finder finds. The goal of

using the OtherInfo table is that it is possible that

similar hyper-alerts happen and the only

difference between these hyper-alerts is the time

of occurrences or not important parameters. In

order not to make difficult for the searching

query in the BaseInfo, we insert these similar

hyper-alerts in the Otherinfo. We also insert the

first alert of these similar alerts in the Otherinfo

table. After doing these works we have a set of

consequences for each hyper-alert. Consequence

finder will pass the set of consequence that may

happen because of the occurrence of this hyper-

alert to the next section, result checker and

correlation engine.

For now, we have a set of consequences or

hyper-alerts that may happen because of this

hyper-alert. However, this hyper-alert may be the

consequence of another hyper-alert or alerts. In

fact, it is possible that this hyper-alert has a

connection with earlier hyper-alerts. In order to

address this issue, we will search this hyper-alert

in all the rows of the result field in the BaseInfo

table, and if we find a hyper-alert or more, we

will check the important parameters of each

founded hyper-alert with the original hyper-alert.

If these parameters are the same, we correlate

these two hyper-alerts. We extract the important

parameter from the knowledge base. In order to

correlate two hyper-alerts the date and time of

them must be checked. Time and date of second

hyper-alert must be greater than the first hyper-

alert. Correlating hyper-alerts that are related to

an attack that the second step of this attack

happens before the first step is a mistake. The

previous field in the OtherInfo table shows the

ID of the previous hyper-alert that this hyper-

alert correlated with and if the isconnected field

in the OtherInfo is set to 1 it means that this

hyper-alert is correlated with another hyper-alert.

As soon as two hyper-alerts are correlated, the

graph generator produces the equivalent of them

and shows it in the output. The resulted graph is

dynamic and will be updated with the new step

of the attack. The hyper-alerts are the node of

this graph, and the edge of this graph shows the

correlation relation.

The goal of alert aggregation is to reduce the

complexity of hyper-alert correlation graphs

without sacrificing the structures of the attack

scenarios; it allows analysts to get concise views

of correlated alerts.

The difficulty of understanding a large hyper-

alert correlation graph is mainly due to the large

number of nodes and edges in the graph. Thus, a

natural way to reduce the complexity of a large

hyper-alert correlation graph is to reduce the

number of nodes and edges. However, to make

the reduced graph useful, any reasonable

reduction should maintain the structure of the

corresponding attacks. We propose to aggregate

hyper-alerts of the same type to reduce the

number of nodes in a hyper-alert correlation

graph.

Link analysis is intended to analyze the

connection between entities represented by

categorical attribute values. Examples include

© 2015, IJOCIT All Rights Reserved Page 678

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Ali Amiri

April, 2015

how two IP addresses are related to each other in

a collection of alerts, and how IP addresses are

connected to the alert types. Though link

analysis takes a collection of hyper-alerts as

input, it indeed analyzes the raw intrusion alerts

corresponding to these hyper-alerts.

Clustering analysis is to partition a set of hyper-

alerts into different groups so that the hyper-

alerts in each group share certain common

features.

Focused analysis is to help an analyst focus on

the hyper-alerts in which he/she is interested. In

particular, this may generate hyper-alert

correlation graphs much smaller and more

comprehensible than the original ones.

Frequency analysis is developed to help an

analyst identify patterns in a collection of alerts

by counting the number of raw alerts that share

some common features.

4. OMADM, correlation and multi-

step attack detection system

By using the method that we mention in section

3, OMADM, and to evaluate the proposed

method, we implement a tool by using Java and

MySQL. We call this tool OMADT1.

For evaluating the proposed method, we use two

knowledge bases. The first knowledge base was

used in Ning et al. [5]. They produce this

knowledge base for DARPA 2000. We create the

second knowledge base for evaluating the

correctness of the proposed method. We take two

multi-step attack scenarios from dataset in [17].

This dataset is not available for public. We also

take three multi-step attack scenarios from CTF

2010. For these five multi-step attack scenarios

we make a knowledge base and for each of their

1 Online Multi-step Attack Detection Tool

steps, we generate some true and false alerts.

You can see this five scenario in Fig.3.

We generate alerts for these scenarios in full

mode and partial mode (ignore some steps of

each scenario), and we give these alerts in an

online mode to OMADT. We inject the alerts

completely, and OMADT detects the full

scenario correctly. We remove some steps of the

attack scenario and make it a partial scenario. If

the steps of the attack are related to each other,

OMADT correlates these steps correctly but if

the steps of the attack aren’t related to each

other, OMADT can’t correlate these steps. By

using DARPA 2000, we evaluate OMADT. You

can see the result in Table 1.

5. Comparing OMADT and TIAA

Fig3: Five attack scenarios

© 2015, IJOCIT All Rights Reserved Page 679

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Ali Amiri

April, 2015

The completeness and soundness of TIAA and

OMADT on DARPA 2000 are like each other

with this difference; that OMADT is online and

TIAA is offline. In the following, we will

evaluate the performance of TIAA and

OMADM.

For evaluating the performance, we use a

computer with Microsoft windows 7 operating

system and 8 gigabyte RAM and an Intel core i5

3.2 GHz CPU. The first performance test is the

amount of time consumes for correlating the

alerts in the DARPA 2000 dataset. You can see

the result of this evaluating in table 2. We repeat

this test five times for more accuracy, and the

amount of consumed time was the same almost.

Table 1.Completeness and Soundness of Alert Correlation

LLDOS 2.0.2 LLDOS 1.0

Inside DMZ Inside DMZ

12 5 41 54 correctly correlated alerts (OMADT)

18 8 44 57 related alerts (OMADT)

13 5 44 57 correlated alerts (OMADT)

66.7% 62.5% 93.18% 94.74% completeness measure Rc (OMADT)

92.3% 100% 93.18% 94.73% soundness measure Rs (OMADT)

 =cR وRs=

Table 2. Time consumption

execute time(s) Inside1 DMZ1 Inside2 DMZ2

TIAA 210 sec 200 sec 112 sec 106 sec

OMADT 51 sec 50 sec 31 sec 27 sec

Improvement=Im (%) 75.7% 75% 72.3% 74.5%

As you can see in table 2, OMADT is four times

faster than TIAA. We calculate the improvement

on percent as Im=(1-)*100.

You can see the average and maximum use of

CPU by these tools in table 3.

For getting the average of CPU consumes we

perform each test five times and calculate the

average of this five test and import this number

as the average. For getting the maximum usage

of CPU, we perform this test five times and with

this regard that the output number of this five

test is almost the same we choose a number that

is almost in the middle of these five numbers and

import this number in the table. As you see in

table 3, the maximum of CPU usage by

OMADM is lower than TIAA, but the average

CPU usage by OMADM is bigger than TIAA. If

you pay attention more and compare this table

with table 2 you will understand that although

the average usage of CPU by OMADM is bigger

than TIAA, but if we multiply this usage into the

time of usage, the resulted number is much less.

© 2015, IJOCIT All Rights Reserved Page 680

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Ali Amiri

April, 2015

You can see the result of this work in row four

and row five in table 3.

You can see the memory usage by OMADM and

TIAA in table 4. As you see in this table, the

amount of RAM usage by OMADM is

constantly 251 MB, but this amount for TIAA is

a little more.

Table 3. CPU utilization

CPU utilization(%) Inside1 DMZ1 Inside2 DMZ2

Avg* Max Avg* Max Avg* Max Avg* Max

TIAA 0.84 24.94 0.8 29.81 0.9 25.23 0.9 19.19

OMADT 2 17.15 2.27 25.47 2.4 17.15 2.4 14

Change rate 2.38 0.68 2.83 0.85 2.66 0.67 2.66 0.72

Time avg for TIAA 0.84*210=176.4 0.8*200=160 0.9*112=100.8 0.9*106=95.4

Time avg for OMADT 2.38*51=121.38 2.27*50=112.5 2.4*31=74.4 2.4*27=64.8

Change rate for Time avg 0.68 0.7 0.73 0.67

Improvment1 31.1% 29.68% 26.19& 32.07%

Improvment 2 32% 15% 33% 28%

 Change Rate= Improvment1= (1-)*100 Improvment2= (1-)*100

Table 4.Memory usage

RAM

utilization(MB)

Inside1 DMZ1 Inside2 DMZ2

Avg* Max Avg* Max Avg* Max Avg* Max

TIAA 269 272 269 270 274 275 269 273

OMADT 251 251 251 251 251 251 251 251

Improvment 6.69% 7.72% 6.69% 7.04% 8.39% 8.72% 6.69% 8.05%

The following charts are a comprehensive

compression about the performance of TIAA and

OMADM.

© 2015, IJOCIT All Rights Reserved Page 681

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Ali Amiri

April, 2015

Furthermore, in the OMADM output graph

because of the changes that we have done, we

have some improvement and these changes make

the graph briefer and more exact. For example,

you can see two graphs for the LLDOS1.0 inside

traffic that is generated by OMADM and TIAA

in the Fig.4 and fig.5.

© 2015, IJOCIT All Rights Reserved Page 682

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Ali Amiri

April, 2015

Fig4: TIAA Graph for LLDOS1.0 inside traffic

Fig5: OMADM Graph for LLDOS1.0 inside traffic

© 2015, IJOCIT All Rights Reserved Page 683

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Ali Amiri

April, 2015

6. References
[1] S. Axelsson, “Intrusion detection systems: A

survey and taxonomy,” Tech. Rep., vol. 99, 2000.

[2] P. Kabiri and A. Ghorbani, “Research on Intrusion

Detection and Response: A Survey.,” IJ Netw.

Secur., vol. 1, no. 2, pp. 84–102, 2005.

[3] S. Salah, G. Maciá-Fernández, and J. E. Díaz-

Verdejo, “A model-based survey of alert

correlation techniques,” Comput. Networks, vol.

57, no. 5, pp. 1289–1317, Apr. 2013.

[4] Z. Lin, S. Li, and Y. Ma, “Real-Time Intrusion

Alert Correlation System Based on Prerequisites

and Consequence,” IEEE Wirel. Commun. Netw.

Mob. Comput., pp. 1–5, Sep. 2010.

[5] P. Ning, Y. Cui, D. S. Reeves, and D. Xu,

“Techniques and tools for analyzing intrusion

alerts,” ACM Trans. Inf. Syst. Secur., vol. 7, no. 2,

pp. 274–318, May 2004.

[6] S. J. Templeton and K. Levitt, “A

requires/provides model for computer attacks,”

Proc. 2000 Work. New Secur. Paradig. - NSPW

’00, pp. 31–38, 2000.

[7] F. Cuppens and A. Miege, “Alert correlation in a

cooperative intrusion detection framework,” IEEE

Secur. Privacy, 2002. Proceedings. …, pp. 202–

215, 2002.

[8] S. Xiao, Y. Zhang, X. Liu, and J. Gao, “Alert

fusion based on cluster and correlation analysis,”

Converg. Hybrid …, pp. 163–168, 2008.

[9] F. Alserhani, M. Akhlaq, I. U. Awan, A. J. Cullen,

and P. Mirchandani, “MARS: Multi-stage Attack

Recognition System,” 2010 24th IEEE Int. Conf.

Adv. Inf. Netw. Appl., pp. 753–759, 2010.

[10] A. Valdes and K. Skinner, “Probabilistic Alert

Correlation,” SRI International, pp. 54–68, 2001.

[11] D. Li, Z. Li, L. Wang, and M. Roesch, “Reducing

false positives based on time sequence analysis,”

Fourth International Conference on Fuzzy

Systems and Knowledge Discovery (FSKD

2007), 2007.

[12] H. T. Elshoush and I. M. Osman, “Reducing false

positives through fuzzy alert correlation in

collaborative intelligent intrusion detection

systems,” International Conference on Fuzzy

Systems, Jul. 2010.

[13] S. Roschke, F. Cheng, and C. Meinel, “A Flexible

and Efficient Alert Correlation Platform for

Distributed IDS,” Fourth International Conference

on Network and System Security, 2010.

[14] G. Tedesco and U. Aickel in, “Real-Time Alert

Correlation with Type Graphs,” in Proceedings of

the 4th International Conference on Information

Systems Security, 2008.

[15] F. Valeur, “Real-time intrusion detection alert

correlation,” Ph.D. dissertation, Univ. Santa

Barbaration, 2006.

[16] F. Valeur, G. Vigna, C. Kruegel, and R. a.

Kemmerer, “Comprehensive approach to intrusion

detection alert correlation,” IEEE Transactions on

Dependable and Secure Computing, vol. 1, no. 3,

Jul. 2004.

[17] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A.

Ghorbani, “Towards Developing a Systematic

Approach To Generate Benchmark Datasets for

Intrusion Detection,” Comput. Secur., vol. 31, no.

3, pp. 357–374, 2012.

Authors Profile

Ali Amiri received the B.S. degree in Software
engineering from ACECR ISFAHAN UNIVERSITY
OF TECHNOLOGY (I.U.T) in 2009 and M.S.
degree in Information Technology Security from
Malekesahtar University in 2013. He then
worked for Security Evaluation Lab for ICT
Appliances in Malekesahtar UNIVERSITY. He is
currently working in network and security

© 2015, IJOCIT All Rights Reserved Page 684

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Ali Amiri

April, 2015

section in the Iranian public email service
(chmail.ir). His research interests include
information security, penetration test
methodologies and methods, network
management and configurations, routing
protocols.

Dr. Alireza Nowroozi is assistant professor
in Security department of the Malekesahtar
University of Technology. His research studies
are mainly focused on IT Security, Crisis
Management and Decision Making. He earned
his BS in Software Engineering from the
Ferdowsi University of Mashhad and his MS in
Computer Science from Sharif University of
Technology. He holds his PhD in Computer
Science in Amirkabir University of Technology.
He earned the highest GPA during MS and PhD
education. He stood first in Azad University’s MS
entrance exam in AI and ranked second in the
state universities’ MS entrance exam in Sharif
University of Technology in CS. His PhD and MS
students are now active in security evaluation,
malware analysis, network security and
penetration testing. He manages the Security
Evaluation Lab of Network Appliances.

